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We describe a three-dimensional algorithm for the advancement of the resistive
MHD equations in cylindrical geometry with line-tied boundary conditions. This
code has been developed to simulate the behavior of solar coronal plasmas. A finite-
difference discretization is used for the radial and axial coordinates; a pseudospectral
method is used for the azimuthal coordinate. The dependent variables are defined
on finite-difference meshes that are staggered with respect to each other to facili-
tate the application of boundary conditions. The time-advance algorithm features a
semi-implicit leapfrog scheme for the wave terms, a predictor–corrector treatment
of advection, and an implicit advance of the resistive and viscous diffusion terms.
The semi-implicit and implicit operators are inverted using a preconditioned con-
jugate gradient method. Special care is taken in maintaining the self-adjointness of
the discretized operators, so that a fast inversion algorithm applicable to symmet-
ric matrices can be used. By way of illustration, we describe the application of the
code to the linear and nonlinear evolution of a kink instability in a twisted flux
tube. c© 1998 Academic Press

Key Words:partial differential equations; initial value and time-dependent initial-
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1. INTRODUCTION

The solar corona abounds with interesting phenomena of controversial physical interpre-
tation. Although it is not understood why the corona is so hot (around 106 K) and what causes
flares to occur, it is believed that magnetic reconnection plays a crucial role in determining
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its structure and evolution. Loops of tenuous magnetized plasma are observed frequently in
the corona. The ends of these coronal loops are anchored in the dense photosphere below,
a situation that has been referred to asline tying. The slow motions in the photosphere
drive the footpoints of the loops, which evolve through series of equilibria. Rapid evolution
may occur when an unstable equilibrium is reached, possibly leading to the development
of current sheets, magnetic reconnection, and the release of magnetic energy that may heat
the corona. If such “disruptions” are sufficiently impulsive, they may be identified with
solar flares. Recent observational and theoretical results on flares and coronal heating can
be found in [1–4].

A complete description of these processes requires a three-dimensional model that in-
cludes the slow, long-wavelength evolution prior to disruption, as well as the rapid short-
wavelength evolution in the nonlinear phase. The resistive magnetohydrodynamic (MHD)
model is appropriate to describe much of the physics associated with these phenomena (ex-
cept in places where the gradient scale-length is smaller than the gyroradius and a kinetic
treatment must be adopted). For simplicity we will restrict our attention to geometries that
are best described in a cylindrical coordinate system. When modeling coronal loops, we
will therefore neglect the important effect of loop curvature [5], studying instead straight
flux tubes as an approximation to large-aspect-ratio coronal loops.

Although the linear stability properties of cylindrical flux tubes have been studied ana-
lytically [6–9], a description of the nonlinear evolution requires a computational approach.
Several cylindrical MHD codes, with axially periodic boundary conditions, have been used
to model laboratory plasmas [10–14]. However, we cannot use such codes for our studies
because we need to impose line-tied boundary conditions to properly model coronal loops,
and a new algorithm must be developed for this purpose.

The goal of the present paper is to describe a fast, accurate, and reliable algorithm for the
advancement of the full resistive and viscous MHD equations in cylindrical geometry which
allows for the specification of driving photospheric motions at the magnetic footpoints. The
code is an improved version of the algorithm employed in [15]. Quantities are evaluated on
grids: the azimuthal variation (θ ) is represented using Fourier series, with pseudospectral
calculation of derivatives; ther and z coordinates are discretized on staggered meshes,
which allows us to define a curl operator whose divergence vanishes identically. A leapfrog
scheme is used for the time advancement of the wave terms. We employ a semi-implicit
operator in the momentum equation, following the method described in [13], while treating
advection with a predictor–corrector scheme. The semi-implicit scheme allows us to set the
time step through considerations of accuracy rather than stability of the algorithm and leads
to a substantial saving of CPU time, compared to a fully explicit algorithm.

The resistive and viscous diffusion terms are advanced implicitly. The resulting implicit
equations and the semi-implicit operator are inverted using a preconditioned conjugate
gradient method [16,17]. We have attempted to preserve many of the analytical properties
of the MHD equations in the discretized equations. In particular, we have taken special care
to preserve the self-adjointness of spatial difference operators. Since the proper differencing
of a self-adjoint operator results in a symmetric matrix, we are therefore able to use the
efficient methods that exist for inverting symmetric matrices. As an illustration of the
properties of our algorithm, we describe its application to the linear and nonlinear evolution
of a kink instability in a twisted flux tube.

The paper is organized as follows: in Section 2 we describe the MHD equations and the
spatial and temporal approximations employed to advance them in time; Section 3 contains
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a description of the implementation of a conjugate gradient algorithm for the inversion of
the implicit spatial operators; in Section 4 we describe an application of the code, and in
Section 5 we summarize our conclusions.

2. COMPUTATIONAL MODEL

Coronal loops consist of a hot, tenuous plasma embedded in a strong magnetic field.
A most important feature of the loops is that their ends are firmly anchored in the dense
photosphere. A sketch of a coronal loop is shown in Fig. 1.

The resistive MHD model is appropriate for our study of solar coronal plasmas. The
MHD equations are written in cylindrical coordinates, neglecting for simplicity the curva-
ture effect. Hence, loops in our analysis are “straightened out” as in Fig. 2. This is clearly
an approximation and important effects are neglected in principle. This description is ex-
pected to be appropriate when the aspect ratio (i.e., the ratio between the radial and the
axial length scales) is large. We write the MHD equations in a convenient nondimensional
form as

∂A
∂t
= v× B− η∇×∇× A, (1)

∂ρ

∂t
= −∇ · (ρv), (2)

∂p

∂t
= −∇ · (pv)− (γ − 1)p∇ · v, (3)

∂v
∂t
= −v ·∇v+ J× B

ρ
− ∇p

ρ
+ ∇ · νρ0∇v

ρ0
, (4)

whereA is the vector potential of the magnetic fieldB =∇×A, J =∇×B is the current
density,v is the velocity,p the pressure,ρ the mass density,η the resistivity, andν the
viscosity.

FIG. 1. A schematic representation of the magnetic field of a loop in the solar corona. Note that all the field
lines are anchored in the photosphere at both ends. In our code we neglect the curvature and the loop appears
“straightened out” (see Fig. 2).
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FIG. 2. Coordinates and boundaries for modeling coronal loops. Field lines are anchored in the photosphere
at z = ±L/2. The loops in the code are “straightened out,” since we ignore the curvature observed in real loops
(see Fig. 1).

The induction equation (1) allows us to select between ideal (η = 0) or resistive MHD
(η 6= 0). An ideal run is possible only in particular conditions, for example, to study the
linear phase of an instability. In general, the grid resolution dictates the minimum values
of η andν that may be used. For example, for a 64× 32× 64 grid, we have found on a
particular problem that they must be at least∼10−3, and sometimes∼10−2, for the solution
to be physically valid.

When we discuss the zero-beta model, in which we assume thatp = 0, we specify the
density to be uniform and fixed in time, so that the mass continuity equation (2) is not
solved. Similarly, we do not advance the energy equation (3) in the zero-beta model. Note
that we neglect the influence of viscous and resistive heating, since we use an adiabatic
energy equation. We plan to add the viscous and resistive heating terms, as well as thermal
conduction, in future versions of the code.

The viscosity in the momentum equation (4) is mainly used to damp short-wavelength
modes in the calculation. In this term we have usedρ0= 1/(2π)

∫
ρdθ , instead ofρ, to

allow the matrix inversion to proceed mode by mode.
The equations describe the long-wavelength and long time-scale evolution of the corona,

including magneto–acoustic waves, ideal and resistive instabilities, and resistive and viscous
damping. However, particle acceleration and X-ray emission require kinetic models that
are not part of the code.

In a coronal loop, the dense photosphere anchors the footpoints of the magnetic field lines,
so that they are dragged by applied surface flowsV. This footpoint shearing is modeled by
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applying the condition at the boundariesz= ±L/2,

∂At

∂t
= (V × B)t , (5)

v = V, (6)

where the subscriptt indicates the tangential component of vectors (the normal component
of A is advanced as in Eq. (1)). Hence boundary conditions are specified only on the
tangential electric field and normal magnetic field. Equations (5)–(6) are also valid at the
radial boundary atr = R, where a conducting wall is present andV = 0. The wall is placed
far enough from the plasma not to affect the physics being studied.

In order to translate from nondimensional to physical quantities we have to specify three
normalization variables for length, magnetic field, and density. For example, when modeling
coronal loops, we can setL◦ = 108 cm , B◦ = 10 G, andρ◦ = 10−15 g cm−3. Then fields and
scalars in Eqs. (1)–(4) can be measured in terms of

A◦ ≡ B◦L◦ G cm,

V◦ ≡ B◦(4πρ◦)−1/2 cm s−1,

J◦ ≡ cB◦(4πL◦)−1 statamp cm−2,

P◦ ≡ B2
◦ (4π)

−1 dyne cm−2,

t◦ ≡ L◦B−1
◦ (4πρ◦)

1/2 s,

η◦ ≡ (4π)1/2c−2ρ−1/2
◦ B◦L◦ s,

ν◦ ≡ B◦L◦(4πρ◦)−1/2 cm2 s−1.

In terms of this normalization, we have: the Alfv´en velocityvA =V◦ ∼ 9× 109 cm s−1, the
Alfv én timeτA = L◦/vA ∼ 1 s, the mass scaleM = ρ◦L3

◦ = 1× 109 g, etc.

2.1. Spatial Approximation

We use cylindrical coordinates(r, θ, z), with 0≤ r ≤ R, 0≤ θ ≤ 2π ,−L/2≤ z≤ L/2,
to model large aspect-ratio coronal loops. A sketch of the coordinate system is presented in
Fig. 2. Theθ coordinate is periodic, so we introduce a discrete meshθ j = 2π( j − 1)/M ,
j = 1, 2, . . . ,M , and write any fieldf as a finite Fourier series,

f (r, θ j , z) =
M/2+1∑

m=−M/2+1

fm(r, z)e
imθ j . (7)

It is well known that the discrete Fourier series converges rapidly if the solution is smooth
[18]. Furthermore, time advancement in Fourier space is facilitated because the poloidal
(m) modes for linear operators decouple. Hence, implicit terms, which are present in the
induction and momentum equations and must be inverted, will be represented as distinct
small submatrices (one for each Fourier mode), instead of a single large matrix.

The complex coefficientsfm are given by

fm(r, z) = 1

M

M∑
j=1

f (r, θ j , z)e
−imθ j . (8)



                    

MHD OF SOLAR CORONAL PLASMAS 177

The reality of f requires thatfm= f ∗−m, wheref ∗m is the complex conjugate offm. Moreover,
f0 and fm/2+1 have zero imaginary parts. We apply (8) to the MHD equations (1)–(4), ob-
taining a set ofM nonlinear partial differential equations in the variables (r, z, t) describing
the evolution of the Fourier components ofA, v, ρ, andp.

We evaluate the nonlinear terms in Eqs. (1)–(4) with a fully dealiased pseudospectral
algorithm, as described in [20]. The pseudospectral method consists of computing operations
either in Fourier space or in real space, according to where it is more convenient. Thus
multiplication is performed in real space to avoid convolution, and derivatives inθ are
evaluated in Fourier space. We use a fast Fourier transform to transform between the two
representations. However, multiplication generates aliasing errors, due to quadratic and
higher nonlinearities. Hence, we truncate theθ -spectrum (dealiasing) and retain only two-
thirds of available Fourier space.

In order to simplify an implicit treatment, we assume thatη andν do not depend onθ .
This choice makes the implicit viscous and resistive operators linear inθ , and, consequently,
poloidal modes decouple in Fourier space.

We choose two staggered meshes for each nonperiodic direction,r andz. Beside being
second-order accurate in calculating derivatives (when uniform meshes are specified), in this
method boundary conditions are specified naturally: for the magnetic field only the normal
component is specified, while the tangential one is computed, and for the electric field the
tangential component is specified, while the normal component is computed. Moreover, the
algorithm has the property that the longitudinal and transverse parts of vectors are effectively
decoupled, so that initially vanishing longitudinal and transverse components will vanish
all the time. A consequence of this is that∇ · B = 0.

Current sheets may form during the nonlinear phase of instabilities in our simulations.
We therefore allow the mesh points in the radial direction to have nonuniform spacing in
order to have locally enhanced resolution in the proximity of the center of the loop. The
axial mesh is normally (but not necessarily) uniformly spaced. Radial mesh points on the
integer mesh are indicated with(ri , i = 1, I −1), wherer1 = 0 andr I−1 = R. On the half-
integer mesh we write(rh;i , i = 1, I ). The relationship between the two set of mesh points
is rh;i = (ri + ri−1)/2. We define also the finite increments(drh;i = ri − ri−1, i = 2, I − 1)
and(dri = rh;i+1−rh;i , i = 1, I −1). In the axial direction we define(zj , j = 1, J−1), with
z1=−L/2 andzJ−1= L/2, with analogous definitions forzh; j , dzj , anddzh; j . Figures 3,
4, 5, and 6 show how the dependent variables are defined on each mesh.

Derivatives are defined on integer or half-integer meshes according to Table 1. With
these definitions the gradient, divergence, and curl operator can be implemented so that the

TABLE 1

Differential Operators and Their Corresponding

Finite Difference Representations

Operator Integer mesh Half-integer mesh

1

r

∂

∂θ
i
m

ri

Ci, j i
m

rh;i
Di, j

∂

∂r

Ei, j − Ei−1, j

drh;i

Fi+1, j − Fi, j

dri

∂

∂z

Gi, j − Gi, j−1

dzh; j

Hi, j+1 − Hi, j

dzj
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FIG. 3. Mesh forvr , Ar , Bz, andJr . The square represents the physical domain inr andz. Mesh points are
indicated with◦.

FIG. 4. Mesh forvθ , Aθ , Jθ , ρ, andp. The square represents the physical domain inr andz. Mesh points are
indicated with×.
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FIG. 5. Mesh forvz, Az, Br , andJz. The square represents the physical domain inr andz. Mesh points are
indicated with¦.

FIG. 6. Mesh forBθ , ν, andη. The square represents the physical domain inr andz. Mesh points are indicated
with •.



             

180 LIONELLO, MIKI Ć, AND SCHNACK

divergence of a curl and the curl of a gradient vanish identically. The components ofB and
J are naturally specified on integer or half-integer meshes according to their definition. The
components of the nonlinear terms in Eqs. (1)–(4) are evaluated on the same grid of the
field components on the left-hand side, using simple averaging where necessary.

Physical boundary conditions forA andv are specified atz= ±L/2 andr = Raccording
to Eqs. (5)–(6).

Boundary values forp andρ are not required to be specified in our formulation, but they
can be evaluated for diagnostic purposes using extrapolation. Atr = 0 we apply geomet-
ric boundary conditions as shown in Appendix A. It is not completely straightforward to
implement such boundary conditions, as they tend to spoil the symmetry properties of the
operators we have to invert. See Section 3 for further discussion.

2.2. Temporal Approximation

The right-hand sides of Eqs. (1)–(4) have advective, dissipative, and wave-like terms that
are treated using predictor–corrector, implicit, and semi-implicit methods. We introduce a
leapfrog time discretization for the various fields, definingA (together withρ and p) and
V at staggered time intervals. The resulting algorithm is

A∗ − An−1/2

1t
= vn × Bn−1/2, P (9)

An+1/2− An−1/2

1t
= vn × B∗ C

− η∇×∇× An+1/2

2

− η∇×∇× An−1/2

2
, (10)

ρ∗ − ρn−1/2

1t
= −∇ · (ρn−1/2vn), P (11)

ρn+1/2− ρn−1/2

1t
= −∇ · (ρ∗vn), C (12)

p∗ − pn−1/2

1t
= −∇ · (pn−1/2vn), P (13)

pn+1/2− pn−1/2

1t
= −∇ · (p∗vn) C

−(γ − 1)pn−1/2∇ · vn, (14)

v∗ − vn

1t
= −vn ·∇vn, P (15)

v∗∗ − vn

1t
= −vn ·∇v∗ C

+ Jn+1/2× Bn+1/2

ρn+1/2
− ∇pn+1/2

ρn+1/2

+∇ · C
21t2ρ

n+1/2
0 ∇(v∗∗ − vn)

∆tρn+1/2
0

, (16)
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vn+1− v∗∗

1t
= ∇νρ

n+1/2
0 ∇vn+1

ρ
n+1/2
0

. (17)

We have marked with P’s and C’s respectively the predictor and corrector steps in the
equations forA, ρ, p, andv. Quantities marked with a∗ or a ∗∗ index are provisional
values needed in the predictor–corrector schemes and for a fully implicit treatment of the
viscous term in Eq. (17).

The constantC2 is the semi-implicit coefficient. The semi-implicit method is described in
[13]. This method is unconditionally stable with respect to all magneto–acoustic and shear
Alfv én modes. Hence, accuracy becomes the most relevant consideration in the choice of
the time step. Briefly, the method consists of adding to the original momentum equation (4)
a linear term multiplied by a coefficient proportional to the time step,

1

ρ0
∇ · C21t2ρ0∇

∂v
∂t
. (18)

This removes the small time-step restriction originally introduced by the wave term. Invert-
ing the linear operator above is much less complex and requires less computer memory than
using a fully implicit scheme. The advective terms in (1)–(4) are formally only first-order
accurate in1t , while the wave-like terms are second-order accurate (centered). The use of
the semi-implicit method for the wave terms leaves only the stability condition

|(kV)max1t | < 1, (19)

due to the explicit treatment of advection. The quantityk is the magnitude of the largest
wave vector compatible with the grid size at the point(ri , zj , θk),

k =
√

k2
θ + k2

r + k2
z =

√(
M

3ri

)2

+
(

1

dri

)2

+
(

1

dzj

)2

. (20)

Note the presence of the factor “3” in the expression forkθ , due to the dealiasing algorithm
which restricts the largest poloidal mode toM/3.

In order to address the stability limits imposed by the advective terms in Eqs. (1)–(4)
and to give a heuristic justification of Eqs. (19), (20), we present a one-dimensional Von
Neumann stability analysis of the advection part of the algorithm in Appendix B.

A stability analysis of our algorithm indicates that the wave-like terms are stable for any
choice of time step, and the advective terms are stable when Eq. (19) is satisfied. How-
ever, we have recently found that the coupling of the leapfrog advance of the wave-like
terms with a predictor–corrector for the advective terms may introduce numerical insta-
bility. This instability does not develop when there is sufficient viscosity in the algorithm.
The calculations we describe in Section 4 have sufficient viscosity to prevent this numer-
ical instability from occurring. We have analyzed this coupling, and we have devised an
algorithm that does not suffer from this instability [19]. The fully implicit differencing of
diffusive terms in Eqs. (1) and (4) does not introduce any stability limitation in the time
step.
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3. SELF-ADJOINT REPRESENTATION OF THE DIFFUSIVE

AND SEMI-IMPLICIT TERMS

The differential operators in the MHD equations have the property of being self-adjoint.
Let us concentrate only on the diffusive terms that appear in Eq. (1) (resistive diffusion
operator) and in Eq. (4) (semi-implicit and viscous). When these equations are advanced in
time implicitly the problem requires solving the algebraic equation

Ax = b, (21)

whereA is the coefficient matrix,x is the unknown vector, andb is the known term. In our
case the dimension of the matrixA is 3I J ×3I J at worst, when the equations for the three
vector components are coupled.

We shall show that it is possible to write for all the above-cited operators a matrixA that
is self-adjoint and positive-definite. This preserves an important property of the analytical
equation and has also a desirable numerical advantage; we can apply the conjugate gradient
(CG) algorithm to rapidly compute the solutionx, instead of more complicated and general
methods. The theory of the CG method is given in [16], and an application to a problem
similar to ours is in [17]. Briefly, the CG method is an iterative algorithm to find the
solution vector of the linear system (21) through successive approximations. It involves
the matrix A only in the context of matrix–vector multiplication. Differently from other
iterative methods, estimates of the largest and smallest eigenvalues of the iteration matrix
are not needed. However rapid convergence occurs when the ratio between the maximum
and minimum eigenvalues ofA (known as the condition number) is small. Since our matrix
is diagonally dominant, we apply diagonal preconditioning and obtain a matrix with a
smaller condition number. The techniques described in this section make the code about 10
times faster than its previous version in [15], which uses the biconjugate gradient method
[17].

3.1. One-Dimensional Model

We present now a discussion about how to implement a self-adjoint representation of a
diffusive operator in one dimension. We consider the following diffusion equation:

∂Φ
∂t
= ∂

∂x

(
β
∂Φ
∂x

)
≡ DβΦ; (22)

x is assumed to vary between 0 andL. We want to solve the equation above numerically.
First we fix two staggered meshes as in Fig. 7.Φ is defined on the half-integer mesh (marked
with ×’s), whileβ lies on the integer mesh (marked with◦’s). The grid points need not be
uniform. A general finite difference method for solving Eq. (22) is

Φn+1−Φn

1t
= ωDβ ·Φn+1+ (1− ω)Dβ ·Φn. (23)

Operators and vectors are in bold when we refer to them as a whole; when we consider
their components we write them in normal type. The value ofω can be any number between
0 (fully explicit) and 1 (fully implicit). ω= 1

2 corresponds to a (centered) second-order
accurate in1t time discretization. We rewrite the previous equation in components as
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FIG. 7. Mesh used to represent Eq. (22). The physical region is between 0 andL. Φ lies on the mesh whose
points are marked with× ; β lies on the one indicated with◦’s. dxi anddxh;i are the distances between neighbor
points for each mesh.

Φn+1
i − ω1t

βi
Φn+1

i+1
−Φn+1

i
dxi

− βi−1
Φn+1

i
−Φn+1

i−1
dxi−1

dxh;i

= Φn
i + (1− ω)1t

βi
Φn

i+1
−Φn

i
dxi
− βi−1

Φn
i
−Φn

i−1
dxi−1

dxh;i
, (24)

where the distance between two mesh points on the half-integer and on integer mesh are
indicated withdxi anddxh;i , respectively. If we write Eq. (24) in matrix form as it stands,
we find that the matrixA is not symmetric. Hence, we cannot apply the CG algorithm
(actually the matrix is tridiagonal, and we might use a fastad hocdirect solver for such
cases. However it loses this property when we increase the number of dimensions).

We know that for functions that are zero at the boundaries the following equality holds:

∫ L

0
X DβΦdx =

∫ L

0
ΦDβXdx. (25)

We can write the numerical representation of Eq. (25) as a product between matrices and
vectors,

X · dxDβ ·Φ = Φ · dxDβ · X. (26)

Heredx is a diagonal matrix whose elements aredxh;i . With the discretization given by (24),
we find thatdxDβ is a self-adjoint matrix. Whenβ is positive, the matrix is also positive
definite.

Therefore, if we multiply both sides of Eq. (24) bydxh;i , we obtain

(M ·Φ)i ≡M0;i Φi +M+;i Φi+1+M−;i Φi−1 = Si ; (27)

M0;i = dxh;i + ω1t

(
βi

dxi
+ βi−1

dxi−1

)
;

M+;i = −ω1t
βi

dxi
;

M−;i =M+;i−1.
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Note that in this form the matrixM is explicitly symmetric. Here we have dropped the
temporal index and have indicated the known term just withSi . In computing(M · Ψ)i
(whereΨi is either the guess solution or a temporary vector used by the CG algorithm), the
index i may vary only in the range 2≤ i ≤ N − 1. When we know how to fix the proper
boundary conditions, without spoiling the self-adjoint nature of the operator, we shall be
able to apply the CG algorithm.

Boundary conditions are generallyDirichlet conditions(values specified at boundary
points) orNeumann conditions(normal gradients at the boundaries). But even a combination
of both is possible if we write them as

Ψ1+ C0Ψ2 = V0 for x = 0,

ΨN + CLΨN−1 = VL for x = L .
(28)

WhereV0,L andC0,L are constants whose values determine whether Dirichlet (C= 0) or
Neumann (C = −1) conditions apply. A proof that the matrixM is positive definite, with
constrains as in Eq. (28), is given in Appendix C.

The way we implement the boundary conditions in our algorithm depends on how we in-
tend to calculate the matrix–vector product at each iteration. We shall examine two methods:
the first one modifies the matrix itself, the second one modifies the vectorΨi .

To implement the first scheme we store the main diagonalM0;i and one offset diagonal
M+;i of the matrix. The diagonal values and the right-hand sideSi must be modified
according to Eq. (28) wheni = 2 and wheni = N− 1 as

M̃0;2 =M0;2− C0M+;1,

S̃2 = S2− V0M+;1;
M̃0;N−1 =M0;N−1− CLM+;N,

S̃N−1 = SN−1− VLM+;N . (29)

For 3≤ i ≤ N−2, S̃i = Si , andM̃0;i =M0;i . Now only values ofΨi with 2≤ i ≤ N−1
enter into the calculation ofM ·Ψ andM is a symmetric positive definite matrix. After the
CG algorithm iterations, when we have found the solutionΦi for the internal points, we set
Φ1 andΦN according to Eq. (28).

However, the previous method might not work when we deal with 2D or 3D problems and
more complicated operators such as “curl–curl.” Then it is possible that boundary conditions
couple two different components of a vector field. In those cases, when we cannot write the
modified diagonals for the self-adjoint matrix as in (29), we rely on the following method
that has the advantage that we do not need to explicitly write the diagonals.

We have implemented a subroutine to set the boundary points of the vectorΨ according
to Eq. (28). Another subroutine calculates(M ·Ψ)i , receiving anN component vector in
input and yielding anN − 2 component vector in output. We split the calculation of the
solution of Eq. (27) into two parts. First, we calculate the “inhomogeneous part,” fixing
the boundary condition for the right-hand side. We take finiteV terms and useΨ(b) as a
work-array. The steps we perform are:

1. SetΨ(b) = 0.
2. Set the boundary points onΨ(b). Since internal points are all zero we obtainΨ(b)

1 = V0

andΨ(b)
N = VL .
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3. Get (M ·Ψ(b))i , i = 2, N− 1. The only nonzero components are(M ·Ψ(b))2=
M+;1V0 and(M ·Ψ(b))N−1 =M+;NVL .

4. Find boundary contributions to the right-hand side of (27),S̃i = Si − (M ·Ψ(b))i , i =
2, N− 1.

During the main iteration loop we calculate the “homogeneous part” of the solution, setting
V = 0. At each iteration of the CG solver the matrix–vector product(M · Ψ)i is evaluated
in two steps:

1. Set the boundary points onΨ. SinceV = 0, Ψ1 = −C0Ψ2, andΨN = −CLΨN−1.
2. Get(M ·Ψ)i , i = 2, N− 1.

After the CG algorithm iterations, when the solutionΦi is retrieved, its values fori = 1
andi = N are easily deduced from Eq. (28).

3.2. Viscosity Equation in Cylindrical Coordinates

In order to solve Eq. (4) the viscosity and semi-implicit operators must be inverted. If we
write the finite difference equivalents of Eqs. (16)–(17) as we have the numerical counterpart
for the one-dimensional model in Eq. (24), we obtain matrices that are no longer self-adjoint
as the analytical operators and require a slow algorithm for their inversion. However, it
is possible to implement a general numerical scheme for inverting both operators. We
shall represent them as symmetric and positive-definite matrices, using Subsection 3.1 as a
guideline. We write

(ρ dV −1tω1 dV∇ ·α∇)v(n+1) = [ρ dV +1tω2 dV∇ ·α∇]v(n). (30)

For the viscosity operatorα is νρ (we writeρ instead ofρ0 to avoid subscript overloading).
Since we use a fully implicit advancement to ensure an efficient damping of the small
unresolved scales, we takeω1 = 1 andω2 = 0. For the semi-implicit algorithmα = C21tρ0

andω1 = 1,ω2 = −1. Note that it is necessary to multiply both sides of the equation by the
element of volumedV in order to obtain a self-adjoint matrix. This enables us to use the
CG algorithm. The differential operatordV∇ ·α∇must be represented in a discrete form
without spoiling the symmetry of the matrix. Thus, we first write this operator in cylindrical
coordinates in the following form: for ther component it is

∇ ·α∇v|r = ∂

∂r

α

r

∂

∂r
(r vr )− ∂α

∂r

vr

r
− m2α

r 2
vr + im

2

(
∂

∂r

(
αvθ

r

)
− 1

r 2

∂

∂r
(rαvθ )

)

+ im

2

(
α
∂

∂r

(
vθ

r

)
− α

r 2

∂

∂r
(vθr )

)
+ ∂

∂z
α
∂vr

∂z
. (31)

For theθ component it is

∇ ·α∇v|θ = 1

r

∂

∂r
rα
∂vθ

∂r
− (1+m2)α

vθ

r 2
− im

2

(
∂

∂r

(
αvr

r

)
− 1

r 2

∂

∂r
(rαvr )

)

− im

2

(
α
∂

∂r

(
vr

r

)
− α

r 2

∂

∂r
(vr r )

)
+ ∂

∂z
α
∂vθ

∂z
. (32)
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And, finally, for thez component we obtain

∇ ·α∇v|z = 1

r

∂

∂r
rα
∂vz

∂r
−m2α

vz

r 2
+ ∂

∂z
α
∂vz

∂z
. (33)

We choose as a natural grid forα the same as that used forρ0. This grid is shown in
Fig. 4. When interpolated values are needed on other grids we put a ˆ or a ¯ over the
symbol to indicate respectively interpolation alongr or z. We can now write the numerical
representation of Eq. (30). We shall drop the temporal index for brevity. The right-hand
side is indicated with just anSi , but its formula is analogous to the left-hand side, the only
differences being the use of the old values ofv and the factor−ω2, instead ofω1. The
equation for thevr component is

(
ri dri dzh; j ρ̂i, j + ω11t

r 2
i dzh; jαi+1, j

rh;i+1drh;i+1
+ ω11t

r 2
i dzh; jαi, j

rh;i drh;i
+ ω11tαi+1, j dzh; j

−ω11tαi, j dzh; j + ω11tm2 α̂i, j dri dzh; j
r i

+ ω11t
r i dri ˆ̄αi, j

dzj
+ ω11t

r i dri ˆ̄αi, j−1

dzj−1

)
vr ;i, j

−ω11t
r i+1ri dzh; jαi+1, j

rh;i+1drh;i+1
vr ;i+1, j − ω11t

r i−1ri dzh; jαi, j

rh;i drh;i
vr ;i−1, j

−ω11t
r i dri ˆ̄αi, j

dzj
vr ;i, j+1− ω11t

r i dri ˆ̄αi, j−1

dzj−1
vr ;i, j−1

− iω11t
m

2
(αi+1, j + α̂i, j )

(
ri

rh;i+1
− rh;i+1

ri

)
vθ;i+1, j

+ iω11t
m

2
(αi, j + α̂i, j )

(
ri

rh;i
− rh;i

r i

)
vθ;i, j = Sr ;i, j . (34)

The one for thevθ component is

(
rh;i drh;i dzh; jρi, j + ω11t (1+m2)

drh;i dzh; jαi, j

rh;i
+ ω11t

r i dzh; j α̂i, j

dri

+ω11t
r i−1dzh; j α̂i−1, j

dri−1
+ ω11t

rh;i drh;i ᾱi, j

dzj
+ ω11t

rh;i drh;i ᾱi, j−1

dzj−1

)
vθ;i, j

−ω11t
r i dzh; j α̂i, j

dri
vθ;i+1, j − ω11t

r i−1dzh; j α̂i, j

dri−1
vθ;i−1, j − ω11t

rh;i drh;i ᾱi, j

dzj
vθ;i, j+1

−ω11t
rh;i drh;i ᾱi, j−1

dzj−1
vθ;i, j−1 + iω11t

m

2
(αi, j + α̂i−1, j )

(
ri−1

rh;i
− rh;i

r i−1

)
vr ;i−1, j

− iω11t
m

2
(αi, j + α̂i, j )

(
ri

rh;i
− rh;i

r i

)
vr ;i, j = Sθ;i, j . (35)

Note that whenm > 0 the equations forvr andvθ are coupled. For thevz component we
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obtain (
ρ̄i, j rh;i drh;i dzj + ω11tm2 drh;i dzj ᾱi, j

rh;i
+ ω11t

r i dzj ˆ̄αi, j

dri

+ω11t
r i−1dzj ˆ̄αi−1, j

dri−1
+ ω11t

rh;i drh;iαi, j+1

dzh; j+1
+ ω11t

rh;i drh;iαi, j

dzh; j

)
vz;i, j

−ω11t
r i dzj ˆ̄αi, j

dri
vz;i+1, j − ω11t

r i−1dzj ˆ̄αi−1, j

dri−1
vz;i−1, j

−ω11t
rh;i drh;iαi, j+1

dzh, j+1
vz;i, j+1− ω11t

rh;i drh;iαi, j

dzh, j
vz;i, j−1 = Sz;i, j . (36)

Let us consider the boxed line in Eq. (35); it containsri−1 at denominator which diverges
for i = 2. The boxed derivatives in Eq. (32) produce that term. Using the results in Ap-
pendix A we can rewrite the representation form= 1 of the second diverging derivative in
Eq. (32) as

∂

∂r

vr

r

∣∣∣∣
2

= − a0

rh;2
+ a1+ O(r 2) = vr ;2/r2− Y

drh;2
(37)

vr ;2 = a0+ a1rh;2+ O(r 4). (38)

Now Y can be easily found, taking into account that

2rh;2 = r2 = drh;2. (39)

The first derivative can be treated in the same way. Hence, the boxed line of Eq. (35) when
i = 2 andm= 1 becomes

+iω11t (α2, j + α̂1, j )

(
−5

2

rh;2
r2

)
vr ;1, j . (40)

Whenm= 2 we can write

vr

r

∣∣∣∣
1

= ∂vr

∂r

∣∣∣∣
1

=−i
∂vθ

∂r

∣∣∣∣
1

=−i
vθ;2, j − vθ;1, j

dr1
. (41)

The boxed line of Eq. (35) then becomes

−ω11t (α2, j + α̂1, j )rh;2
vθ;2, j − vθ;1, j

dr1
. (42)

For m≥ 3 the above-cited line equals zero fori = 2. It is quite easy to verify that the
equations for the components ofv have been written in a self-adjoint form. Once we have
fixed the boundary conditions we can deliver the equations to the CG solver.

The fieldv may assume (in principle) arbitrary valuesV atz= ± L/2 andr = R, while
for the singular boundary atr = 0 the values are dictated by conditions in Appendix A.
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Thus we write

vr ;1, j =
{

0 if m 6= 1
−i vθ;2, j if m= 1

vθ;1, j =
{−vθ;2, j if m= 0, 2
vθ;2, j otherwise

vz;1, j =
{
vz;2, j if m 6= 1
−vz;2, j if m= 1

vr ;N, j = Vr ;R, j

vθ;N, j = −vθ;N−1, j + 2Vθ;R, j

vz;N, j = −vz;N−1, j + 2Vz;R, j

vr ;i,1 = −vr ;i,2+ 2Vr ;i,−L/2

vθ;i,1 = −vθ;i,2+ 2Vθ;i,−L/2

vz;i,1 = Vz;i,−L/2

vr ;i,M = −vr ;i,M−1+ 2Vr ;i,+L/2

vθ;i,M = −vθ;i,M−1+ 2Vθ;i,+L/2

vz;i,M = Vz;i,+L/2. (43)

The first method to implement the boundary conditions, as explained in Subsection 3.1,
can be used. In fact, the coupling ofvr andvθ in our scheme does not spoil the self-adjoint
nature of the operator.

3.3. The Induction Equation in Cylindrical Coordinates

Let us consider how to solve the induction equation

1

η

∂A
∂t
= −∇×∇× A + S, (44)

where the diffusive “curl–curl” operator is self-adjoint. We are not interested now in the
ideal part of Eq. (1), which is treated separately with the predictor–corrector and merely
adds a source term to the right-hand side of

dV

(
1

η
+ ω1t∇×∇×

)
A(n+1) = dV

(
1

η
− (1− ω)1t∇×∇×

)
A(n). (45)

The equation above is the finite-difference and self-adjoint representation of Eq. (44) when
S= 0. It can be shown that to have stability for all1t it must be1

2 ≤ ω ≤ 1. In the code
we chooseω = 1

2, which is also second-order accurate in time. The analytical form of the
curl–curl operator, in cylindrical coordinates and after a Fourier transform inθ , is

∇×∇× A|r = m2

r 2
Ar − ∂

2Ar

∂z2
+ i

m

r 2

∂

∂r
(r Aθ )+ ∂

2Az

∂r ∂z
, (46)

∇×∇× A|θ = im
∂

∂r

Ar

r
− ∂

∂r

1

r

∂

∂r
r Aθ − ∂

2Aθ
∂z2
+ i

m

r

∂Az

∂z
, (47)

∇×∇× A|z = 1

r

∂

∂r
r
∂Ar

∂z
+ i

m

r

∂Aθ
∂z
− 1

r

∂

∂r
r
∂Az

∂r
+ m2

r 2
Az. (48)
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Note that the three components ofA are coupled form ≥ 1. We prefer to holdη constant
for the sake of simplicity. We shall drop the temporal index and write the right-hand side
of Eq. (45) just asSi , whose form is easily deduced from the left-hand side. The equation
for the radial component is(

ri dri dzh; j
η

+1tω
m2

ri
dri dzh; j +1tω

ri dri

dzj
+1tω

ri dri

dzj−1

)
Ar ;i, j

−1tω
ri dri

dzj
Ar ;i, j+1−1tω

ri dri

dzj−1
Ar ;i, j−1+ i1tωm

dzh; j rh;i+1

ri
Aθ;i+1, j

− i1tωm
dzh; j rh;i

r i
Aθ;i, j +1tωri Az;i+1, j −1tωri Az;i, j

−1tωri Az;i+1, j−1+1tωri Az;i, j−1 = Sr ;i, j . (49)

The equation forθ -component is

(
rh;i drh;i dzh; j

η
+1tω

r 2
h;i dzh; j
r i dri

+1tω

a

r 2
h;i dzh; j

r i−1dri−1
+1tω

rh;i drh;i
dzj

+1tω
rh;i drh;i
dzj−1

)
Aθ;i, j − 1tω

rh;i rh;i+1dzh; j
r i dri

Aθ;i+1, j

−1tω

b

rh;i rh;i−1dzh; j
r i−1dri−1

Aθ;i−1, j − 1tω
rh;i drh;i

dzj
Aθ;i, j+1

−1tω
rh;i drh;i
dzj−1

Aθ;i, j−1+ i1tωmdrh;i Az;i, j − i1tωmdrh;i Az;i, j−1

+ i1tωm
rh;i dzh; j

r i
Ar ;i, j − i1tωm

c

rh;i dzh; j
r i−1

Ar ;i−1, j = Sθ;i, j . (50)

Finally, we write the equation for thez-component as(
rh;i drh;i dzj

η
+1tωm2 drh;i dzj

rh;i
+1tω

ri dzj

dri
+1tω

ri−1dzj

dri−1

)
Az;i, j

−1tω
ri dzj

dri
Az;i+1, j −1tω

ri−1dzj

dri−1
Az;i−1, j +1tωri Ar ;i, j+1

−1tωri Ar ;i, j − 1tωri−1Ar ;i−1, j+1+1tωri−1Ar ;i−1, j

+ i1tωmdrh;i Az;i, j+1− i1tωmdrh;i Az;i, j = Sz;i, j . (51)

Note that in Eq. (50) there are diverging terms wheni = 2. We have marked them witha,
b, andc. Whenm= 0 only the first two are present. They derive from the finite difference
representation of

1

r

∂

∂r
r Aθ

∣∣∣∣
1

(52)
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which, considering thatAθ = O(r ) for m= 0, equals

2
∂Aθ
∂r

∣∣∣∣
1

. (53)

Therefore, it is easy to verify thata andb become

2
rh;2dzh; j

dr1
. (54)

Whenm ≥ 1 we must reconsider how we treat the derivative from which all the diverging
terms come, that is

− ∂
∂r
(∇× A)z

∣∣∣∣
1

. (55)

Thezcomponent of a vector in cylindrical coordinates is a scalar, so its Fourier modes behave
like O(r m) near the origin. Thus we can write the equation above as a finite difference

− (∇× A)z;2, j
drh;2

. (56)

This means thata, b, andc disappear whenm≥ 1.
The equations for the three components ofA have been written in a self-adjoint form.

Boundary conditions must be provided now through Eq. (5). Let us write the right-hand side
of Eq. (5) asI . We need not specify boundary values forAr whenr = R and for Az when
z= −L/2 orz= +L/2. In fact, there is neither a radial derivative ofAr in Eq. (46) nor an
axial derivative ofAz in Eq. (48). Forr = 0 we exploit the results found in Appendix A.
So we write

Ar ;1, j =
{

0 if m 6= 1
−i Aθ;2, j if m= 1;

Aθ;1, j =
{−Aθ;2, j if m= 0, 2

Aθ;2, j otherwise;

Az;1, j =
{

Az;2, j if m 6= 1
−Az;2, j if m= 1;

A(n+1)
θ;N, j + A(n+1)

θ;N−1, j = A(n)θ;N, j + A(n)θ;N−1, j + 1
21t Iθ;R, j

A(n+1)
z;N, j + A(n+1)

z;N−1, j = A(n)z;N, j + A(n)z;N−1, j + 1
21t Iz;R, j

A(n+1)
r ;i,1 + A(n+1)

r ;i,2 = A(n)r ;i,1+ A(n)r ;i,2+ 1
21t Ir ;i,−L/2

A(n+1)
θ;i,1 + A(n+1)

θ;i,2 = A(n)θ;i,1+ A(n)θ;i,2+ 1
21t Iθ;i,−L/2

A(n+1)
r ;i,M + A(n+1)

r ;i,M−1 = A(n)r ;i,M + A(n)r ;i,M−1+ 1
21t Ir ;i,+L/2

A(n+1)
θ;i,M + A(n+1)

θ;i,M−1 = A(n)θ;i,M + A(n)θ;i,M−1+ 1
21t Iθ;i,+L/2, (57)

where we had to reintroduce the temporal index for clarity.
Due to the complex intercoupling between the equations for each component ofA,

only the second method to implement boundary conditions, described in Subsection 3.1, is
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applicable. Hence, we have written a subroutine that, given an input vectorA, yields the
left-hand side of Eq. (45) for all the internal points, taking into account of the boundary
conditions above. This subroutine is called by the CG algorithm at each iteration.

4. THE NONLINEAR KINK

As an illustration of the application of our code to a solar coronal problem, we describe
the evolution of the kink instability in coronal flux tubes. An earlier version of the present
code has been used to study the linear stability of the ideal line-tied kink mode [15]. A
preliminary study of the nonlinear evolution of the kink mode has also been presented [21].
The kink instability may be relevant to describing compact loop flares and the heating of
the solar corona.

A particular equilibrium, known as the Gold–Hoyle field [22], has been used frequently
to test new algorithms. The kink stability of the Gold–Hoyle field has been studied compu-
tationally by Mikić et al. [15], Foote and Craig [23], Craig and Sneyd [24], and Baty and
Heyvaerts [25], among others. In order to demonstrate our techniques, we present results on
the linear and nonlinear evolution of the kink instability in this configuration. Although our
code was designed to model more realistic equilibria, especially those that are generated
when specified twisting motions are prescribed in the photosphere, we have chosen the
Gold–Hoyle field as an illustration, since its linear stability is well known [6, 7, 15, 25] and
its nonlinear evolution has also been studied [24, 25].

The force-free Gold–Hoyle magnetic field is defined by

Br = 0 (58)

Bθ = B◦r
a(1+ r 2/a2)

, (59)

Bz = B◦
(1+ r 2/a2)

, (60)

wherea defines the length scale andB◦ = Bz at r = 0. The Gold–Hoyle equilibrium is also
known as the uniform-twist field because the twist angle, which is defined by

Φ(r ) ≡ L Bθ
r Bz
= L

a
, (61)

is independent of the radius. The number of turns around the axis that a field line completes
while traversing fromz=−L/2 toz= L/2 is given byΦ/2π . This configuration is unstable
to an ideal MHDm= 1 kink instability when the twist exceeds a critical value,Φ>Φc.
The critical twist for the line-tied kink has been determined asΦc = 2.49π by Hood and
Priest [6] and by Einaudi and Van Hoven [7],Φc = 2.51π by Miki ćet al.[15], Φc = 2.46π
by Foote and Craig [23], andΦc = 2.47π by Baty and Heyvaerts [25].

We choose a 101× 64 r –z mesh with 32 points inθ , corresponding to the modes
−10≤ m≤ 10 after dealiasing. The outer radial wall is placed atr = R= 20a. Thez mesh
is chosen to be uniform, and the radial mesh is nonuniform, with the smallest mesh cells
near the axis, where1r = 0.03a, increasing to1r = 1.4a near the radial wall. We use a
uniform initial densityρ= ρ◦, and a uniform initial pressurep= p◦, with p◦ selected to
give a beta on axis of 1%, whereβ◦ = 8πp◦/B2

◦ . (Note that a force-free equilibrium that is
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immersed in a uniform-pressure plasma still remains an equilibrium.) Since the magnetic
field strength in the Gold–Hoyle equilibrium falls with the radial distance from the axis, the
plasma beta increases with the radius, reachingβ = 1 atr ∼ 10a. We have chosen a finite
beta to make the nonlinear evolution correspond more closely to the solar corona, where
the plasmaβ is small, but finite.

Since we expect the twist in the solar corona to be introduced by slow magnetic field
footpoint motions in the photosphere, the appropriate initial state ought to be one in which
the twist is only slightly larger than the critical value for linear instability. There is no
more footpoint shearing atz=±L/2 and the applied surface flow considered isV= 0 (see
Eq. (6)), because the time-scale evolution of the configuration (due to the kink) is smaller
than the one for the photospheric flow. We selected a twist ofΦ= 3π in order to produce
a distinguishable linear phase of the instability, while at the same time keeping the excess
twist (i.e., that above the stability threshold) small. In other simulations we have found that
the nature of the nonlinear state does not seem to be sensitively dependent on the excess
twist, as long as it is not too large [26]. The loop length is set by the conditionL =Φa,
giving a loop with aspect ratioL/a= 9.42 in this case. The (radial) Alfv´en time is defined
by τA =a/v0

A, where the Alfvén speed on the axis is given byv0
A= B◦/

√
4πρ◦. A uniform

viscosity is used, corresponding to a viscous dissipation timeτν ≡ a2/ν= 100τA.
We study the ideal MHD evolution of this equilibrium (withη= 0) in order to investigate

whether the nonlinear evolution of the kink instability leads to the formation of current
sheets. When strong gradients develop in the magnetic field during ideal MHD numer-
ical simulations, it may be necessary to introduce plasma resistivity. In the case of the
Gold–Hoyle field, as discussed below and as noted by Baty and Heyvaerts [25], the non-
linear evolution of the kink instability does not introduce current sheets, so that it is not
necessary to introduce resistivity into the calculation. This is in contrast to other equilibria
that we have studied, of which the zero net-current equilibrium is a particular example,
for which we have found that the nonlinear evolution of the kink leads to the formation
of current sheets [26], requiring the introduction of finite resistivity during the later stages
of the calculation. We were thus able to perform the present calculation with the ideal
MHD model. (We note that a small amount of numerical resistivity is introduced during the
calculation by the upwind treatment of the advection, as described in Appendix B.)

We start the calculation att = 0 with the m= 0 equilibrium field given by
Eqs. (58)–(60), to which we add a smallm= 1 perturbation with an amplitudev∼ 3×
10−4 v0

A. (The perturbation was chosen to be the eigenfunction corresponding to the most
unstable linear mode in a periodic cylinder, modified suitably to have zero displacement at
the axial boundaries, as required by line tying. Any small initial perturbation could have
been used without affecting the nonlinear results.) The equations were integrated for 500τA,
requiring about three CPU hours on the Cray YMP/C-90 at NERSC. This code has also
been implemented on the Cray T3D at CINECA in Bologna.

The initial time step was chosen to be 0.1τA. The time step remained 0.1τA during the
linear part of the run, decreasing to 0.05τA during the initial phase of the nonlinear evolution
as a result of the advective flow limit on the time step (Eq. 19) and increasing back to 0.1τA

after saturation of the kink toward a new equilibrium. The advantage of using the semi-
implicit scheme is illustrated by the fact that the wave Courant number (i.e., the ratio of the
time step to the time step required by an explicit calculation) remains significantly larger
than 1 during this calculation. Initially, the wave Courant number is 16, and it increases to
30 by the end of the calculation.
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In Figs. 8 and 9 we plot the magnetic energy and the kinetic energy in various modes as a
function of time. Initially, them= 0 mode shows the relaxation of the analytic equilibrium to
the mesh (since it is not a perfect equilibrium of the discretized equations). Them= 1 mode
grows exponentially in time, with a growth rateγ τA = 0.022. The higher-m modes show
growth associated with the coupling to them= 1 mode. Beginning att ∼ 200τA, when the
m= 1 mode reaches a significant amplitude, there is a nonlinear interaction during which
the higher-m modes become sizable. This phase corresponds to the observed kinking of
the axis of the flux tube. Eventually, the kink mode appears to saturate, indicating that the
kinked flux tube is settling toward a new equilibrium.

The linear growth rate of them= 1 mode atΦ= 3π is lower than previous estimates
because of the effect of finite beta. For the case with zero beta, the growth rate has been
estimated previously asγ τA = 0.034 by Mikić et al. [15], γ τA = 0.027 by Foote and Craig
[23], andγ τA = 0.037 by Baty and Heyvaerts [25]. Apparently, even though the plasma
beta is small on the axis, the growth rate is changed significantly by the plasma pres-
sure. This is because the magnetic field strength falls far from the axis in this equilib-
rium, so that even a small pressure can affect the kinking motion of the flux tube. Indeed,
when we repeated the calculation with the zero-beta model (i.e., withp◦ = 0 and a con-
stant density), we found the linear growth rate of them= 1 mode to beγ τA = 0.038, in
good agreement with previous zero-beta results. (The growth rate determined by Foote
and Craig is only intended to be a rough approximation for this equilibrium near the
marginal stability point [23].) The finite pressure leads to a reduction of the growth rate,
apparently due to the fact that beta is greater than one at a large radius, as described
above. The finite-beta case is a more realistic representation of the solar corona than the
force-free case (withβ = 0), in which the flux tube kinking in the weak-field region is not
impeded.

Figures 8 and 9 show that the kinked flux tube appears to settle to a new equilib-
rium state. This state does not appear to have any current sheets; the magnetic field re-
mains smooth and free of discontinuities. In Fig. 10 we show the evolution of the total

FIG. 8. Magnetic energy in various Fourier modes as a function of time for the nonlinear kink. The energy in
normalized by the factorE◦ = B2

◦a
3/(8π).
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FIG. 9. Kinetic energy in various Fourier modes as a function of time for the nonlinear kink. The energy in
normalized by the factorE◦ = B2

◦a
3/(8π).

magnetic, kinetic, and thermal energies (defined byW= ∫ [B2/8π ] dV, K = ∫ 1
2ρv

2 dV,
and E= ∫ [ p/(γ − 1)] dV, respectively). Note that as the flux tube kinks, the magnetic
energy is converted into kinetic energy and, finally, into thermal energy. The kinked flux
tube approaches an equilibrium that has smaller magnetic energy than the initial state.

The large-scale kinking of the flux tube is best illustrated by traces of the magnetic field
lines. In Fig. 11 we show traces at four instants of time. Att = 100τA, during the linear
stage, the kink is barely perceptible in the field line plot. Att = 250τA the kinking pattern
is clearly visible. The traces att = 400τA andt = 500τA show that the kink is saturating to
a new equilibrium state.

FIG. 10. The total magnetic, kinetic, and thermal energies (indicated respectively withW, K , and E) as
functions of time for the nonlinear kink. The energy in normalized by the factorE◦ = B2

◦a
3/(8π).
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FIG. 11. Field line plots att = 100τA, t = 250τA, t = 400τA, andt = 500τA. Field lines start from the bottom
of the loop from a circle of radiusa. Initially the kink pattern is barely visible, but when the instability saturates
to a new equilibrium (third and fourth panel), the center of the loop has moved outward to aboutr = 4a.

5. CONCLUSIONS

We have presented a fast and accurate algorithm for the solution of the full resistive and
viscous MHD equations in cylindrical coordinates in the presence of line-tied boundary
conditions. The computer code based on this algorithm has been applied to the study of
solar coronal flux tubes. In particular, the techniques are suited to the simulation of flux
tubes whose footpoints are driven by slow photospheric motions.

The algorithm is implemented using finite differences in two dimensions, with pseu-
dospectral derivatives along the third (periodic) dimension. The use of staggered finite-
difference meshes preserves the solenoidal nature of the magnetic field and leads to a natural
specification of boundary conditions on the tangential electric field and the normal magnetic
field. Time advancement of the wave-like terms is performed with a leapfrog scheme. A
semi-implicit operator is used in the momentum equation to give unconditional stability
to wave-like terms. Advective terms are advanced using a predictor–corrector scheme, and
therefore limit the time step by a Courant condition based on the flow speed. This allows
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us to use significantly larger time steps than those achievable by a fully explicit algorithm.
The viscous and resistive terms are discretized using a fully implicit time advance. The
semi-implicit, viscous, and resistive operators are inverted using a preconditioned conju-
gate gradient method. Special care has been taken to maintain the self-adjointness of the
discretized operators, so that a fast inversion algorithm applicable to symmetric matrices
can be used.

To illustrate the application of the code, we have presented the nonlinear evolution of
the ideal kink instability in the Gold–Hoyle uniform-twist field. Our results show that it
is possible to follow the linear and nonlinear evolution of the kink instability. In the case
of the Gold–Hoyle equilibrium, it appears that the kink instability saturates nonlinearly as
the flux tube evolves to a new kinked equilibrium without the formation of current sheets.
This result is in agreement with the results of Baty and Heyvaerts [25]. In contrast, Craig
and Sneyd [24] concluded that the kink instability in the Gold–Hoyle field causes current
sheets to form, a conclusion that is based on a calculation on a Lagrangian mesh whose
accuracy is impaired when the mesh becomes significantly distorted by the finite-amplitude
kink displacement. The evolution observed here for the Gold–Hoyle equilibrium contrasts
sharply with the nonlinear evolution of the kink mode in a tokamak in which the nonlinear
evolution causes current sheets (i.e., true discontinuities in the magnetic field) to form [27],
a difference that has been attributed to the effect of line tying in the case of the coalescence
instability by Longcope and Strauss [28]. In our case, it was thus possible to study the ideal
MHD evolution. In general, instabilities can introduce current sheets, in which case it is
necessary to study the resistive evolution. Equilibria in which the kink instability creates
current sheets are discussed in [26, 29]. The role of a resonant surface in the formation of
current sheets as a result of the nonlinear evolution of kink instabilities has been addressed
previously [9, 25].

Therefore, the kink instability in the Gold–Hoyle equilibrium is not likely to play an
important role in the solar corona, since it does not appear to cause significant heating or to
lead to impulsive motions. On the other hand, other equilibria, in particular those in which
the nonlinear evolution causes current sheets to form, leading to significant plasma heating,
magnetic reconnection, and particle acceleration, are likely to be of interest in understanding
coronal phenomena. Numerical algorithms and codes such are the one detailed here will be
an important tool in this endeavor.

The code has also been used elsewhere [29, 26] to study the nonlinear evolution of
instabilities in more realistic equilibria that are intended to model coronal loops formed by
the twisting of uniform ambient fields and from the emergence of magnetic flux tubes from
the photosphere. In these cases we have modeled the formation of current sheets, magnetic
reconnection, and fast energy release.

APPENDIX A: FOURIER COEFFICIENTS IN POLAR COORDINATES

Let us consider a scalar functionF(x, y). We assume it is regular near the origin and we
expand it in Taylor series

F(x, y) = F0+ x
∂F

∂x

∣∣∣∣
0

+ y
∂F

∂y

∣∣∣∣
0

+ x2

2

∂2F

∂x2

∣∣∣∣
0

+ y2

2

∂2F

∂y2

∣∣∣∣
0

+ xy
∂2F

∂x ∂y

∣∣∣∣
0

+ · · · . (62)
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Sincex = r cosθ andy = r sinθ , We can rewrite Eq. (62) as

F(x, y) = F0+ r

[
1

2

(
∂F

∂x

∣∣∣∣
0

− i
∂F

∂y

∣∣∣∣
0

)
ei θ + 1

2

(
∂F

∂x

∣∣∣∣
0

+ i
∂F

∂y

∣∣∣∣
0

)
e−i θ

]

+ r 2

[
1

8

(
∂2F

∂x2

∣∣∣∣
0

− 2i
∂2F

∂x∂y

∣∣∣∣
0

r − ∂2F

∂y2

∣∣∣∣
0

)
ei 2θ + 1

4

(
∂2F

∂x2

∣∣∣∣
0

+ ∂2F

∂y2

∣∣∣∣
0

)

+ 1

8

(
∂2F

∂x2

∣∣∣∣
0

+ 2i
∂2F

∂x ∂y

∣∣∣∣
0

− ∂2F

∂y2

∣∣∣∣
0

)
e−i 2θ

]
+ · · · . (63)

Hence ther n term is a certain combination of exponential functionseimθ , with−n ≤ m≤ n.
Sinceeimθ may appear only whenn ≥ |m| when we calculate the Fourier series ofF , we
obtain

F̃
(m)
(r ) =

∞∑
n=|m|

c(m)n r n. (64)

Thus we haveF̃
(m)
(r ) = O(r |m|) for smallr .

Let us consider now only one term of the Fourier seriesa(m)(x, y)= F̃
(m)
(r )eimθ . Notwith-

standingr is always defined to be greater than zero, we notice that in an algebraic point of
view we are allowed to write

r → −r, (65)

θ → θ + π. (66)

In this casex andy do not change and so

F̃
(m)

eimθ (r ) = F̃
(m)
(−r )eimθ (−1)m. (67)

Let us expand both members of Eq. (67) in Taylor series aroundr = 0, obtaining

∞∑
n=|m|

c(m)n r n(1− (−1)n+m) = 0. (68)

This imposes the following condition on the Taylor series terms of themth Fourier coeffi-
cient of F(x, y),

c(m)n = 0

{
n+m= 2k+ 1
k = 0, 1, 2, . . . .

(69)

This means that the Taylor series of an even coefficient has only even terms and, vice versa,
if m is odd only odd terms are found.

Let us examine now a vectorU = (Ux,Uy), where the vector componentsUx(x, y) and
Uy(x, y) are scalar functions with the same properties ofF(x, y). The components ofU in
polar coordinates are

Ur = Ux cosθ +Uy sinθ, (70)

Uθ = −Ux sinθ +Uy cosθ. (71)



           

198 LIONELLO, MIKI Ć, AND SCHNACK

From this follows that the Fourier series coefficients are

Ũ
(m)
r = 1

2

(
Ũ
(m−1)
x + Ũ

(m+1)
x − i Ũ

(m−1)
y + i Ũ

(m+1)
y

)
, (72)

Ũ
(m)
θ = 1

2

(
i Ũ

(m−1)
x − i Ũ

(m+1)
x + Ũ

(m−1)
y + Ũ

(m+1)
y

)
. (73)

ThusŨ
(m)
r andŨ

(m)
θ areO(r min(|m−1|,|m+1|)). Whenm is even only odd terms of the Taylor

series are found and vice versa. Note that forr = 0 andm≥ 1 the following equality holds:

Ũ
(m)
r =− i Ũ

(m)
θ . (74)

In cylindrical coordinates the third componentUz behaves as a scalar function.

APPENDIX B: STABILITY OF PREDICTOR–CORRECTOR

ADVECTION ALGORITHMS

The typical advection equation in one dimension is

∂ f

∂t
+ v ∂ f

∂x
= 0. (75)

To solve the equation above we employ the predictor–corrector algorithm

f ∗j − f n
j

1t
= −vD f n,

f n+1
j − f n

j

1t
= −αvD f ∗ − (1− α)vD f n, (76)

where 0≤ α ≤ 1. For centered differences

D f = f j+1− f j−1

21x
, (77)

while for upwind differences

D f =


f j − f j−1

1x
if v > 0,

f j+1− f j

1x
if v < 0.

(78)

The scheme above is first-order accurate in time. In order to perform a Von Neumann
stability analysis we suppose that a local solution behaves likef ( j1x, tn) = zn exp(ik j1x)
and we assume for simplicity thatv > 0. The amplification factorz(k)must have modulus
less than 1 for stability (see [30] for a more complete discussion of the method). Substituting
f into Eq. (76) we obtain

z = 1− v1t

1x
Q

(
α
v1t

1x
Q− 1

)
; (79)

Q =
{

i sin(k1x) centered differences
1− cos(k1x)+ i sin(k1x) upwind differences.
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The case of centered differences and no predictor–corrector (α= 0) yields|z| always greater
than one and is unconditionally unstable. If we introduce upwind differences then we have
|z| ≤ 1 when

v
1t

1x
≤ 1, (80)

the so-called Courant condition. With the predictor–corrector and centered differences we
obtain

2α − 1

α2
≥
(
v1t

1x

)2

(81)

for stability. For a fully advanced corrector (α= 1) we find again the Courant condition.
Using these methods introduces a numerical viscosity term

νn
∂2 f

∂x2
(82)

into Eq. (75), which is useful to damp small unresolved scales. Let us writez= exp(−iωr1t
+ γ1t)and then findγ from Eq. (79), limiting ourselves to the casek1x¿ 1. From Eq. (82)
it follows that the numerical viscosity coefficient isνn=−γ /k2. With upwind differences
andα = 0 its value is

ν ' v1x

2

(
1− v1t

1x

)
, (83)

and forα = 1 and centered differences

ν ' v21t

2
. (84)

The situation in the code is complicated, with respect to this simple example, by the presence
of nonuniform three-dimensional meshes in a non-Cartesian frame of reference. Further-
more, the conditions above are onlynecessaryand not sufficient for stability. Fully advanced
predictor–corrector is used to stabilize advection in the periodic directionθ , since we cannot
upwindθ -derivative. We normally combine this method with upwind differences inr and
z, originating the stability condition showed in Eq. (19) since both must obey the Courant
condition.

APPENDIX C: POSITIVE DEFINITENESS OF A

SYMMETRIC TRIDIAGONAL MATRIX

Let us consider a symmetric tridiagonal matrixA of the form:

Ai,i =


c2+ b1+ b2+ C0b1, i = 2,
ci + bi−1+ bi , 3≤ i ≤ N − 2,
cN−1+ bN−2+ bN−1+ CLbN−1, i = N − 1,

Ai,i+1 = bi 2≤ i ≤ N − 2

Ai,i−1 = bi−1 3≤ i ≤ N − 1,

(85)
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whereci andbi are positive andC0 andCL may be either 1 or−1. A matrix A is positive
definite if and only if

x · A · x ≥ 0 ∀x 6= 0. (86)

The condition above becomes for our matrix

N−1∑
i=2

x2
i (ci + bi + bi−1)+

N−1∑
i=3

xi xi−1bi−1 (87)

+
N−2∑
i=2

xi xi+1bi + x2
2b1C0+ x2

N−1bN−1CL ≥ 0. (88)

We can rewrite it as

N−1∑
i=2

x2
i ci +

N−2∑
i=2

bi (xi − xi+1)
2+ x2

2b1(1+ C0)+ x2
N−1bN−1(1+ CL) ≥ 0, (89)

that is manifestly true.
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